ISRAEL JOURNAL OF MATHEMATICS, Vol. 25, 1976

EXISTENTIALLY COMPLETE NILPOTENT
GROUPS'

BY
D. SARACINO

ABSTRACT

Let n be a positive integer, let K, denote the theory of groups nilpotent of class
at most n, and let K, denote the theory of torsion-free groups nilpotent of class
at most n. We show that if n =2 then neither K, nor K has a model
companion. For K, we obtain the stronger result that the class of finitely generic
models is disjoint from the class of infinitely generic models. We also give some
other results about existentially complete nilpotent groups.

The study of model companions and existentially complete structures in group
theory was initiated in [1], where Eklof and Sabbagh proved that the theory of
abelian groups has a model companion but the theory of groups does not. Soon
afterward, Macintyre [3] strengthened the negative result for groups by showing
that the classes of existentially complete and infinitely generic groups are distinct
(E# G). In [7] we considered the theory T, of groups soluble of length < n (n
fixed, = 2), and showed that T, has no model companion, for any n. Specializing
to the case n = 2, we proved that for the theory of metabelian groups, there is an
3V3 sentence which holds in every infinitely generic model and fails in every
finitely generic one, and that consequently E# G and the finite and infinite
forcing companions are distinct.

In this paper, we consider the most interesting classes of groups left untreated
by the above results.

THEOREM 1. For any n = 2 the theory of groups nilpotent of class = n has no
model companion.

A slight complication of the proof yields the following result, which is of
independent interest because of the connection with nilpotent Lie algebras. (See

4], 8.)

* Dedicated to the Memory of Abraham Robinson.
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THEOREM 2. For any n = 2 the theory of torsion-free groups nilpotent of class
= n has no model companion.

Finally, a different kind of argument, using finite forcing, proves

THEOREM 3. Let K, denote the theory of groups nilpotent of class < n. Then for
n =2 there is an IV sentence of first-order group theory which holds in every
infinitely generic model of K, and fails in every finitely generic one. Consequently,
E# G and the finite and infinite forcing companions of K, are distinct.

Of course Theorem 3 implies Theorem 1, but because our proof of Theorem 3
does not carry over to the torsion-free case we have chosen to present Theorem
1 separately and then indicate the changes in its proof required to prove
Theorem 2.

1. Preliminaries

We assume that the reader is familiar with the basic machinery used in
studying existentially complete structures, and in particular with the notions of
finite and infinite forcing in model theory, finitely and infinitely generic
structures, and finite and infinite forcing companions. The basic references are
[5] and [6].

Let K be a first-order theory. If 3, denotes the class of substructures of models
of K, i.e. the class Mod (K.) of models of the set of universal consequences of K,
then it is well known that K has a model companion iff the class of existentially
complete structures in ¥ is elementary in the wider sense. Thus to show that a
theory K has no model companion it is sufficient to show that the class of
existentially complete structures in 3 is not closed under the formation of
ultrapowers.

For definiteness we axiomatize the theory K of groups in a first-order
language with equality which has a binary function symbol ¢ for group multiplica-
tion, a unary function symbol ' for inverses, and a constant symbol 1 for the
identity element. It is easy to write down a set K of universal sentences in this
language which axiomatizes the theory of groups.

To describe the theory K, of groups nilpotent of class at most n we recall that
if @ and b are elements of a group G then their commutator [q, b] is defined to
be the element a 'b~'ab of G. If A and B are subgroups of G then [A, B] is the
subgroup generated by all [, b] with a € A, b € B. The lower central series of G
is the chain of normal subgroups G =G', G*’=[G,G],-:,G" =
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[G*, G, G* =i G",--,G*"'=[G*G],- -+, etc. G is nilpotent of
class =n if G*'={1}.

If we define, by induction, an (n + 1)-fold commutator [x,, - -, X...] to be
{[x:s- -5 xa], xaxd], then it is not difficult to see that G is nilpotent of class = n iff
every (n + 1)-fold commutator in G is 1. Thus, if we let ¢. be the sentence
abbreviated by Vx, -+ - VX1 [X1, " -+, Xaa] = 1, then K, = K U{¢,} is a universal
axiomatization of the class of groups nilpotent of class = n.

We will make use of the following simple lemma on commutators.

LemMa. For any elements a, b, ¢ of a group G,
[ac, b]= ¢ '[a, b]c]c, b].

Consequently if [a, b] commutes with ¢ then [ac, b] = [a, b][c, b]. In particular if
a commutes with [a, b] then [a’, b] = [a, b]" for any positive integer r, and in fact
this is also true if r is negative.

2. Nonexistence of model companions

To prove Theorem 1 we will show that the class of existentially complete (e. c.)
models of the universal theory K, is not closed under the formation of
ultrapowers if n = 2. The following propositions contain the necessary informa-
tion about e.c. models of K,. As a matter of notation, if G isagroupanda € G
then Z(G) denotes the center of G and Z(a) denotes the centralizer of a. We fix
nzl.

ProrosITION 1. Let G be an e.c. model of K,. Then for any positive integer k
there exists in G an (n — 1)-fold commutator which has order = k modulo Z(G).

Proor. Let H be a torsion-free nilpotent group of class n, and let b be an
(n — 1)-fold commutator which is not in Z(H). Observe that b has infinite order
modulo Z(H), because if b™ € Z(H) and we choose d such that bd # db then
[b,d] #1isin Z(H) (because H is of class n) and consequently by the Lemma
[b,d]™ =[b™ d] =1, so there is torsion in H, a contradiction.

Choosing elements d,, - - -, di which don’t commute with b, b*, - - - b* respec-
tively, we see that if ¢ is the sentence IxIw, Iw. Ty, Iy (x =
[wi, -, wasi] A Aoy yix? # xy;), then HE ¢,50 G D H k= ¢,50 G = ¢ since G is
e.c.

ProprosiTioN 2. Let G be an e.c. model of K, and let G* denote an ultrapower
of G formed with respect to a nonprincipal ultrafilter on the set I of positive integers.
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Then there exist elements b, ¢ in G* such that i) b, c& Z(G*), ii)) b is an
(n —1)-fold commutator, iii) c¢ is not in the subgroup of G* generated by
Z(G*)U{b}, and iv) Z(b)C Z(c) in G*.

Proor. For i €1 let b; be an (n — 1)-fold commutator in G which is of order
=2i modulo Z(G). Let ¢, =bi, and let b and ¢ be the elements of G*
represented by the sequences {b;} and {c:} respectively. Then it is easy to see that
(i), (ii) and (iv) are satisfied. For (iii), suppose ¢ = b™t, where m is an integer and
tEZ(G*). Then b™"c=tE Z(G*), but for i>|m|, bi"c:=bi""& Z(G)
since 1 < i — m < 2i. This situation is impossible by Kos’ Theorem, and the proof
is complete.

ProposITION 3. Let G be a model of K., and b, ¢ elements of G such that (i),
(ii), and (iii) of Proposition 2 hold with G* replaced by G. Then there exists a
model H of K, extending G and x € H which commutes with b but not with c.

Proor. Let (z) denote the infinite cycle on z, let F= G#*(z), and let
H,=F/F"*'. If d € G is in F"*' then by applying the homomorphism F — G
obtained by mapping G — G identically and z» 1, we get dE G""',s0d =1
since G is nilpotent of class at most n. Thus we can consider G C H,, and clearly
H, is a model of K,. Observe for future reference that any homomorphism
F— G induces a homomorphism H,— G.

If Z denotes the canonical image of z in H, and H, denotes the subgroup of
H, generated by [b, 7], then H, is a normal subgroup of H, since [b, Z] € Z(H,).
Let H denote the factor group Hi/H,. H D G, because H,N G = {1}, as we see
by considering the homomorphism of the last paragraph. Clearly H is a model of
K., and in H the image 2z of Z mod H, commutes with b. But suppose [c, ?] =1.
Then in H,, [¢, Z] = [b, Z]" for some integer n, so by the Lemma [c, Z] =[b", 7],
so Z commutes with ch™". But ¢b™"& Z(G), so cb™ does not commute with Z
(consider a homomorphism H,— G which is the identity on G and takes Z to an
element which doesn’t commute with ¢b™"). This contradiction shows that we
can take x = z, and the proposition is proved.

The proof of Theorem 1 is now immediate because, in the notation of
Proposition 2, the ultrapower G* fails to satisfy Ix(xb = bx A xc # cx), while
Proposition 3 shows that some extension of G * does satisfy this sentence. Hence
G* is not e.c.

The proof of Theorem 2 follows the same sequence of ideas as the proof of
Theorem 1, but requires some modifications in Propositions 2 and 3. Let K,
denote the theory of torsion-free groups nilpotent of class at most n.
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PropoOSITION 4. Proposition 1 remains valid if K, is replaced by K.

PROPOSITION 5. Proposition 2 remains valid if we replace K, by K} and
strengthen (iii) to read (iii}: the subgroup generated by c intersects the subgroup of
G* generated by Z(G)* U {b} trivially.

Proor. For i €1 let b, be an (n — 1)-fold commutator in G which is of order
Zz i(i + 1) modulo Z(G). Let ¢, = b}, and again let b and ¢ denote the elements
of G* represented by the sequences {b.} and {c:}. Clauses (i), (ii), and (iv) are
easy as before, and to prove (iii) observe that for integers k,m we have
ckb7™ = bi* ™ for any i; assuming not both k and m are 0 and that i >| k|, |m |,
we have 1=|ik —m |<i*+1i,s0 cibi"& Z(G). Thus ¢*b™" & Z(G*) by Kos’
Theorem.

PRrOPOSITION 6. Let G be a model df K. and b, ¢ elements of G such that (i),
(ii), and (iii) of Proposition 5 hold with G* replaced by G. Assume that
[c,a] € Z(G) for all a € G. Then there exist a model M of K, extending G and
x € M which commutes with b but not with c.

Proofr. Form H; and H D G as in the proof of Proposition 3 and let M denote
the quotient of H by its torsion subgroup. (The set of torsion elements is a
normal subgroup in any nilpotent group.) Then we can consider G C M because
G is torsion-free. Let x denote the image in the quotient of the element z of
Proposition 3. All we have to prove is that [¢,x]# 1 in M. If [¢,x] =1, then
[c,?]’" =1 in H for some positive integer m. Thus [c, Z]™ =[b, Z]" in H, for
some integer n. Consider a homomorphism H,— G given by G — G identically,
zp an element a which does not commute with ¢™b™" (possible since
c¢"b™"& Z(G)). Then [c,a]™ = [b, a]" in G, so since by assumption both [c, a]
and [b, a] are in Z(G), the Lemma yields [c™, a] = [b", a], whence ¢ "a '¢™ =
b™a'b" and ¢™b™" commutes with a, a contradiction.

Now to finish the proof of Theorem 2, let G*, b, ¢ be as in Proposition 5.
Observe that the extra hypothesis imposed on ¢ by Proposition 6 is satisfied in
G* ie.[c,a]l € Z(G*) forall a € G*. Therefore, there exists a model M of K,
extending G* and satisfying 3x (xb = bx A xc# cx), so as in the proof of
Theorem 1, G* is not e.c.

J.E#AG
In this section we give the proof of Theorem 3. K, is as in the previous section.

ProrosITION 7. Let G be a model of K,,, n = 2, let ¢ be an n-fold commutator in
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G, and let be an (n — 1)-fold commutator which is of infinite order modulo Z(G).
Then there exist a model H of K, extending G and h € H such that c = [b, h].

Proor. Consider G C G *(z)/(G *#(z))"*' = H,, as before. We claim that
(c7[b 2N G ={1},

where (¢7'[b, £]) is the cycle on ¢7'[b, Z]. For, since ¢ is in Z(H,), (c'[b, Z]) =
{c™[bz]":n€Z}. If c™"[b,Z]"=d € G, n#0, then ¢™" = d (again consider
the map G— G identically, x» 1), so [bz]"=1, ie. [b"zZ]=1. Thus
b" € Z(G), contradicting the fact that b has infinite order modulo Z(G).

Observe that (c7'[b, Z]) is normal in H, since it is central. Now if H =
H,/(c7'[b, Z]), then by the claim we can consider G C H, and if h denotes the
canonical image of Z in H then clearly ¢ = [b, k].

ReMark. Proposition 7 holds for K, as well as for K.

ProrosiTiON 8. Let G be an e.c. model of K,, n =2. Let b be an (n — 1)-fold
commutator in G. Then b has infinite order modulo Z(G) iff

GEVx, - VYx.3y(x:,- +, x.] =[b y])

Proor. “Only if”’ follows from the previous proposition, since G is e.c. For
“if”’, note that for any m >0 there are g,,- - -, g, € G such that [g,,---, g.]" # 1.
Now if b™ € Z(G) then for all y € G, [b,y]" =[b™ y]=1; so if

GEVYx - Vx,3y [x1,- -, x.]=[by])
then [gi,- -+, 8.]" =1 for all g, -, g. € G, a contradiction.
Now for n =2 let ¥, be the sentence
Fwi - Iward Vx - Vxa Iy (x5 2] =W wass, YD)
ProposiTioN 9. If G is an infinitely generic model of K, then G =¥,

Proor. Let G, be a model of K, which contains an (n — 1)-fold commutator
which is of infinite order modulo Z(Go,). Let G, be an e.c. model of K, such that
GoC G:. Then in G, c is of infinite order modulo Z(G,), so by Proposition §,
G,E ¥, If in particular we take G, infinitely generic, then we see that there
exists an infinitely generic model of K, which satisfies ¥,. Since all infinitely
generic models of K, are elementarily equivalent because K, has the joint
embedding property, this finishes the proof.

ProrosiTionN 10. If G is a finitely generic model of K, then G =V,
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Proor. It suffices to show that no condition can force V.. So suppose p +¥,;
then for some ¢;,- -+, c.—1 in a set C of forcing constants,

p }'Vxl b 'Vx,.ay ([X1, Tty x,.] = [cly Oty Y])

and we can assume that ¢, -, ¢,—; occur in p. Thus for any p, D p, and any
dy, -+, d. in C, there are e in C and an extension p, of p; such that

pzl‘[dl, cry, d,.] = [C], AR C;.—],e].

Now since finitely generated nilpotent groups are residually finite [2], there
exists an integer m >0 such that po=p U{[ecy, -+, c.-1]™ = 1} is a condition.
(Compare proposition 4 of [7].) If we choose d,, - - -, d. not mentioned in p then
pi=poU{d,,--+,d.]"# 1} is a condition. Taking p, and e as above,

pZ}—[dly Y dn] = [CI’ MY Cn~l, e]’

so the formula [dy, -+, d.] = [c1," * *, €ao1, €] i8S 1D Py, a@s are [€y,* * ¢, €aoq]™ = 1 and
[di,--+,d.]"# 1. But this is impossible, because these three formulas are
inconsistent:  the first two give [di,---,d.]" =[cy, s G e]™ =
{[c1, "+, ca-1]™ €] = 1, contradicting the third.

Propositions 9 and 10 yield Theorem 3. Together with Proposition 8, they also
show that an infinitely generic model of K, can be distinguished from a finitely
generic one by the fact that the quotient of the former by its center must contain
an element [x,, - - -, Xx,—] of infinite order, while the quotient of the latter by its
center can never contain such an element. In particular for n = 2, one quotient
can never be periodic and the other must always be.

In the case of K7, every noncentral (n — 1)-fold commutator has infinite order
modulo the center, since otherwise there would be torsion in the center. Hence
every e.c. model of K, satisfies

Yw, - VWn—l{az([wh T Waey z] #1)—
Vxl . .Vxnay([xl’ teey xn] = [Wl, trryWh, )’])}7

and in particular every such model satisfies ¥,.

We conclude with a result on the centers of e.c. nilpotent groups. In [7] we
proved that every element of the commutator subgroup of an e.c. metabelian
(solvable of rank =2) group is itself actually a commutator. We have the
following analogue for K,:

ProposITION 11. Let G be an e.c. model of K,. Then i) every element of the
center of G is an n-fold commutator, and consequently ii) Z(G)= G".
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Proor. Let M be a model of K, containing an (n — 1)-fold commutator b
which is of infinite order modulo the center, and let N = G @ M. Then b has
infinite order modulo Z(N). If ¢ € Z(G) then c is central in any model of K,
extending G, because G is e.c. This is all we need to repeat the proof of
Proposition 7 and find an extension H of N and h € H such that ¢ = [b, h]. Thus
HE3x; - 3x.- 3y (¢ = [x1," - -, X-1, ¥]), SO this sentence holds in G.

ProrosiTION 12. Proposition 11 holds with K, replaced by K.

Proor. If G is torsion-free then we can, if necessary, factor the extension H
of Proposition 11 by its torsion subgroup to obtain a torsion-free extension of G
containing the desired elements b and h.

The following corollary of Proposition 11 was found during a conversation
with Greg Cherlin.

ProposiTION 13. i) For any n = 2, the center of any finitely generic model of K.,
is periodic.
ii) Every finitely generic model of K, is periodic.

Proor. i) Let ¢ € Z(G) where G is a finitely generic model of K,. By
Proposition 11, we have ¢ = [[x1, - - , Xa-1], X»] fOr some x,, - - -, x. in G. Proposi-
tions 8 and 10 give us an integer m such that [xi,- -, x,_1]" € Z(G). Then
c™ =1

ii) We have already remarked that for the case n =2, G/Z(G) is periodic;
thus by (i), G is itself periodic.
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