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BY 
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ABSTRACT 

Let n be a positive integer, let K. denote the theory of groups nilpotent of class 
at most n, and let K~ denote the theory of torsion-free groups nilpotent of class 
at most n. We show that if n_->2 then neither K, nor K; has a model 
companion. For K. we obtain the stronger result that the class of finitely generic 
models is disjoint from the class of infinitely generic models. We also give some 
other results about existentially complete nilpotent groups. 

The study of model companions and existentially complete structures in group 

theory was initiated in [1], where Eklof  and Sabbagh proved that the theory of 

abelian groups has a model companion but the theory of groups does not. Soon 

afterward, Macintyre [3] strengthened the negative result for groups by showing 

that the classes of existentially complete  and infinitely generic groups are distinct 

( E #  G).  In [7] we considered the theory T, of groups soluble of length -<_ n (n 

fixed, => 2), and showed that 7". has no model companion,  for any n. Specializing 

to the case n = 2, we proved that for the theory of metabelian groups, there is an 

3V:I sentence which holds in every infinitely generic model and fails in every 

finitely generic one, and that consequently E #  G and the finite and infinite 

forcing companions are distinct. 

In this paper,  we consider the most interesting classes of groups left untreated 

by the above results. 

THEOREM 1. For any n >--_ 2 the theory of groups nilpotent of class <- n has no 

model companion. 

A slight complication of the proof yields the following result, which is of 

independent  interest because of the connection with nilpotent Lie algebras. (See 

[4], [8].) 
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THEOREM 2. For any n >-->_ 2 the theory of torsion-free groups nilpotent of class 

<= n has no model companion. 

Finally, a different kind of argument, using finite forcing, proves 

THEOREM 3. Let K, denote the theory of groups nilpotent of class <= n. Then for 

n >- 2 there is an 3V3 sentence of first-order group theory which holds in every 

infinitely generic model of K, and fails in every finitely generic one. Consequently, 

E ~ G and the finite and infinite forcing companions of K, are distinct. 

Of course Theorem 3 implies Theorem 1, but because our proof of Theorem 3 

does not carry over to the torsion-free case we have chosen to present Theorem 

1 separately and then indicate the changes in its proof required to prove 

Theorem 2. 

1. Preliminaries 

We assume that the reader is familiar with the basic machinery used in 

studying existentially complete structures, and in particular with the notions of 

finite and infinite forcing in model theory, finitely and infinitely generic 

structures, and finite and infinite forcing companions. The basic references are 

[5] and [6]. 

Let K be a first-order theory. If E denotes the class of substructures of models 

of K, i.e. the class Mod (Kv) of models of the set of universal consequences of K, 

then it is well known that K has a model companion iff the class of existentially 

complete structures in ~ is elementary in the wider sense. Thus to show that a 

theory K has no model companion it is sufficient to show that the class of 

existentially complete structures in E is not closed under the formation of 

ultrapowers. 

For definiteness we axiomatize the theory K of groups in a first-order 

language with equality which has a binary function symbol o for group multiplica- 

tion, a unary function symbol -1 for inverses, and a constant symbol 1 for the 

identity element. It is easy to write down a set K of universal sentences in this 

language which axiomatizes the theory of groups. 

To describe the theory K, of groups nilpotent of class at most n we recall that 

if a and b are elements of a group G then their commutator  [a, b] is defined to 

be the element a-lb-lab of G. If A and B are subgroups of G then [A, B] is the 

subgroup generated by all [a, b] with a ~ A, b E B. The lower central series of G 

is the chain of normal subgroups G = G  1, G 2= [G, G], . . ., G"  = 
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[ G " ' ,  G ] , . .  , G o : n : = ,  G , , . . . ,  G = [ G ' , G ] ,  ." ", etc. G is ni lpotent  of 

class _<- n if G"+1 = {1}. 

If we define, by induction,  an (n + 1)-fold c o m m u t a t o r  [x~ , - . . ,  x,+t] to be  

[[x~, �9 �9 -, x , ] ,  x,+t], then  it is not difficult to see that  G is n i lpotent  of  class _-< n iff 

every (n + 1)-fold c o m m u t a t o r  in G is 1. Thus,  if we let q~. be  the sen tence  

abbrev ia t ed  by V x l ' ' "  Vx,+, [x~ , - . . ,  x,+l] = 1, then K ,  = K U {q~,} is a universal  

ax iomat iza t ion  of the class of groups  ni lpotent  of class <_- n. 

We  will m a k e  use of the following s imple l e m m a  on commuta to r s .  

LEMMA. For any elements a, b, c of a group G, 

[ac, b] = c-'[a, b]c[c, b]. 

Consequently if [ a, b] commutes with c then [ ac, b] = [ a, b ][c, b ]. In particular if 

a commutes with [a, b] then [a', b] = [a, b]" for any positive integer r, and in fact 

this is also true if r is negative. 

2. Nonexistence of model companions 

T o  p rove  T h e o r e m  1 we will show that  the class of existentially comple te  (e. c.) 

models  of the universal  theory  K ,  is not closed under  the fo rmat ion  of 

u l t rapowers  if n -> 2. The  fol lowing propos i t ions  contain the necessary informa-  

tion abou t  e.c, models  of K,. As a ma t t e r  of nota t ion,  if G is a g roup  and a E G 

then Z ( G )  denotes  the cen te r  of G and Z ( a )  denotes  the centra l izer  of  a. We  fix 

n=>2.  

PROPOSmON 1. Let G be an e.c. model o[ K,. Then for any positive integer k 

there exists in G an (n - 1)-fold commutator which has order >-_ k modulo Z ( G ) .  

PROOF. Let  H be a tors ion-f ree  n i lpotent  g roup  of class n, and let b be  an 

(n - 1)-fold c o m m u t a t o r  which is not in Z ( H ) .  O b s e r v e  that  b has infinite o rde r  

modu lo  Z ( H ) ,  because  if b" ~ Z ( H )  and we choose  d such that  bd~  db then 

[b, d] ~ 1 is in Z ( H )  (because  H is of class n)  and consequent ly  by the L e m m a  

[b, d ] "  = [b" ,  d] = 1, so there  is torsion in /4, a contradict ion.  

Choos ing  e lements  dl, �9 �9 dk which don ' t  c o m m u t e  with b, b 2, �9 �9 �9 b k respec-  

tively, we see that  if ~ is the sen tence  3X3WL..3W,-13yL..3yk(x = 

[W~,"" ", W,-1] A A~=~ yjxJ~ x % ) ,  then H ~  r so G e H  ~ q~, so G ~ q~ since G is 

e . c .  

PROPOSmON 2. Let G be an e.c. model of K,  and let G* denote an ultrapower 

of G formed with respect to a nonprincipal ultrafilter on the set I of positive integers. 
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Then there exist elements b, c in G* such that i) b, c ~  Z (G * ) ,  ii) b is an 

( n -  1)-fold commutator, iii) c is not in the subgroup of G* generated by 

Z (G*)U{b} ,  and iv) Z(b)C_Z(c )  in G*. 

PROOF. For i E l let b~ be an (n - 1)-fold commutator  in G which is of order  

~ 2 i  modulo Z(G) .  Let q =bl ,  and let b and c be the elements of G* 

represented by the sequences {b~} and {q} respectively. Then it is easy to see that 

(i), (ii) and (iv) are satisfied. For (iii), suppose c = b rot, where m is an integer and 

t E Z ( G * ) .  Then b - m c = t E Z ( G * ) ,  but for i > l m l ,  bT~ 'c ,=bl -m~Z(G)  

since 1 < i - m < 2i. This situation is impossible by Eos' Theorem, and the proof 

is complete. 

PRoeosmoN 3. Let G be a model of K. and b, c elements of G such that (i), 

(ii), and (iii) of Proposition 2 hold with G* replaced by G. Then there exists a 

model H of K, extending G and x E H which commutes with b but not with c. 

PROOV. Let (z) denote the infinite cycle on z, let F =  G * ( z ) ,  and let 

H1 = F/F  "+~. If d E G is in F "+1 then by applying the homomorphism F--> G 

obtained by mapping G --~ G identically and z ~ 1, we get d E G "+~, so d = 1 

since G is nilpotent of class at most n. Thus we can consider G _C H1, and clearly 

H1 is a model of K,. Observe for future reference that any homomorphism 

F--> G induces a homomorphism H~--> G. 

If ~ denotes the canonical image of z in H~ and/-/2 denotes the subgroup of 

H~ generated by [b, ~.], then/-/2 is a normal subgroup of H1 since [b, zT] E Z ( H  O. 

Let H denote the factor group H1/H2. H ~ G, because/-/2 n G = {1}, as we see 

by considering the homomorphism of the last paragraph. Clear ly / - / i s  a model of 

K,, and in H the image z of ~ rood/-/2 commutes with b. But suppose [c, z]  = 1. 

Then in H1, [c, ~] = [b, ~.]" for some integer n, so by the Lemma [c, zT] = [b',  ~], 

so ~ commutes with cb-". But cb-"~ Z (G) ,  so cb-" does not commute with 

(consider a homomorphism H~ --> G which is the identity on G and takes g to an 

element which doesn't  commute with cb-"). This contradiction shows that we 

can take x = 3, and the proposition is proved. 

The proof of Theorem 1 is now immediate because, in the notation of 

Proposition 2, the ultrapower G* fails to satisfy 3x(xb = bx ^ x c / c x ) ,  while 

Proposition 3 shows that some extension of G* does satisfy this sentence. Hence 

G* is not e.c. 

The proof of Theorem 2 follows the same sequence of ideas as the proof of 

Theorem 1, but requires some modifications in Propositions 2 and 3. Let K :  

denote the theory of torsion-free groups nilpotent of class at most n.  
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PROPOSITION 4. Proposition 1 remains valid if K,  is replaced by K*~. 

PROPOSITION 5. Proposition 2 remains valid if we replace K, by K*~ and 

strengthen ( iii ) to read ( iii )' : the subgroup generated by c intersects the subgroup of 

G* generated by Z (G)*  t3 {b} trivially. 

PROOF. For i ~ I let b~ be an (n - 1)-fold commutator  in G which is of order 

>- i(i + 1) modulo Z ( G ) .  Let c, = bl, and again let b and c denote the elements 

of G* represented by the sequences {b,} and {c,}. Clauses (i), (ii), and (iv) are 

easy as before, and to prove (iii)' observe that for integers k, m we have 

c~bT" = bl k-"~ for any i; assuming not both k and m are 0 and that i >[  k I, [m I, 

we have l< - [ ik  - m I< i2+ i, so c~bT'f~ Z ( G ) .  Thus c k b - " ~  Z ( G * )  by Js 

Theorem. 

PROPOSITION 6. Let G be a model bf K*. and b, c elements of G such that (i), 

(ii), and (iii)' of Proposition 5 hold with G* replaced by G. Assume that 

[c, a] ~ Z ( G )  for all a E G. Then there exist a model M of K*, extending G and 

x E M which commutes with b but not with c. 

PROOF. Form HI and H ~ G as in the proof of Proposition 3 and let M denote 

the quotient of H by its torsion subgroup. (The set of torsion elements is a 

normal subgroup in any nilpotent group.) Then we can consider G C_ M because 

G is torsion-free. Let x denote the image in the quotient of the element z of 

Proposition 3. All we have to prove is that [c, x] fi 1 in M. If [c, x] = 1, then 

[c, z ] "  -- 1 in H for some positive integer m. Thus [c, ~]" = [b, ~]n in H1 for 

some integer n. Consider a homomorphism H1 --~ G given by G --~ G identically, 

z -  an element a which does not commute with c~'b -" (possible since 

crab-"rE Z(G) ) .  Then [c, a] '~ = [b, a]" in G, so since by assumption both [c, a] 

and [b, a] are in Z ( G ) ,  the Lemma yields [c m, a] = [b ", a], whence c-ma-lc " = 

b-"a-~b n and c"b-"  commutes with a, a contradiction. 

Now to finish the proof of Theorem 2, let G*, b,c be as in Proposition 5. 

Observe that the extra hypothesis imposed on c by Proposition 6 is satisfied in 

G*, i.e. [c, a] E Z ( G * )  for-all a E G*. Therefore,  there exists a model M of K :  

extending G* and satisfying 3x (xb = bx ^ x c ~ c x ) ,  so as in the proof of 

Theorem 1, G* is not e.c. 

3. E ~ G  

In this section we give the proof of Theorem 3. K, is as in the previous section. 

PROPOSITION 7. Let G be a model of K,, n >= 2, let c be an n-fold commutator in 
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G, and let be an (n - 1)-fold commutator which is of infinite order modulo Z ( G ) .  

Then there exist a model H of K,  extending G and h E H such that c = [ b, h ]. 

PROOF. Consider  G C_ G * ( z ) / ( G * ( z ) )  n§ as before.  We claim that  

(c-l[b, ~]) Cl G = {1}, 

where  (c- ' [b ,  77]) is the cycle on c-l[b, 77]. For,  since c is in Z(H,) ,  (c- ' [b ,  77]) = 

{c-"[b,  ~]n : n ~ Z}. If c-"[b, e] ~ = d ~ G, n ~  0, then c -"  = d (again consider  

the map G--->G identically, x ~ 1), so [b, 77] " =  1, i.e. [b~,77] = 1. Thus  

b" E Z ( G ) ,  contradict ing the fact that b has infinite o rde r  modulo  Z ( G ) .  

Observe  that (c-~[b, 77]) is normal  in H1 since it is central.  Now if H = 

H,/(c-~[b, 77]), then by the claim we can consider  G _C H, and if h denotes  the 

canonical  image of ~ in H then clearly c = [b, h].  

REMARK. Proposi t ion 7 holds for  K+. as well as for  K.. 

PROPOSITION 8. Let G be an e.c. model of K,, n >= 2. Let b be an (n - 1)-fold 

commutator in G. Then b has infinite order modulo Z ( G )  iff 

G ~ V x , . . . g x . 3 y ( [ x l , . . . , x .  l = [b,y]) .  

PROOF "On ly  if" follows f rom the previous proposi t ion,  since G is e.c. For  

" i f" ,  no te  that  for  any m > 0 there  are gl, �9 �9 g, ~ G such that [g~,. �9 g , ] "  / 1. 

Now if b" ~ Z ( G )  then for  all y E G, [b, y ] "  = [ b ' ,  y] = 1; so if 

G ~ V x , . . . V x , 3 y  [ x , , . - - , x . ]  = [b,y]) ,  

then [g~, �9 �9 g.]= = 1 for all g~, �9 �9 g. E G, a contradict ion.  

Now for  n _-> 2 let ~ ,  be the sentence  

3 w , . . .  3 w ._ ,Vx , . . .Vx .  3 y ( [ x , , - . . ,  x.]  = [ w , , . . . ,  w._,, y]). 

PROPOSITION 9. If G is an infinitely generic model of K,  then G ~ ~ , .  

PROOF. Let  Go be a model  of K,  which contains an (n - 1)-fold commuta to r  

which is of infinite o rde r  modulo  Z(Go). Let  G1 be an e.c. model  of K.  such that 

Go C_ GI. Then  in G,,  c is of infinite o rder  modulo  Z(G~), so by Proposi t ion 8, 

G1 D ~ . .  If in part icular  we take G~ infinitely generic,  then we see that there  

exists an infinitely generic model  of K.  which satisfies ",F.. Since all infinitely 

generic models  of K.  are e lementar i ly  equivalent  because K.  has the joint  

embedding  proper ty ,  this finishes the proof.  

PROPOSITION 10. If G is a finitely generic model of K.  then G ~ -7 ~ . .  
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PROOF. It suffices to show that no condition can force ~ , .  So suppose p t- ",P, ; 

then for some c i , - - - ,  c,-1 in a set C of forcing constants, 

p ~ Vxl -  �9 - V x n 3 y  ( [ x l , . . - , x ~ ]  = [ c i , . . . ,  c~_,  y ] )  

and we can assume that c~ , . . . ,  c,_~ occur in p. Thus for any pl D p, and any 

d l , " . ,  dn in C, there are e in C and an extension p2 of p~ such that 

p2~[dl,...,do) = [ C l , . . . , c . _ , e ] .  

Now since finitely generated nilpotent groups are residually finite [2], there 

exists an integer m > 0 such that po = p U {[cl,- .  -, c~_~]" = 1} is a condition. 

(Compare  proposition 4 of [7].) If we choose d , .  �9 dn not ment ioned in p then 

p~ = p0 t.){[dl,"" ", d . ]m~ 1} is a condition. Taking p2 and e as above, 

p2~-[dl , . . . ,d , ]=[Cl , . - . , c~_ , ,e] ,  

so the formula [ d , . . . ,  d.] = [c~, �9 �9 cn-,, e] is in p:, as are [ci, �9 �9 cn_~] m = 1 alxd 

[ d ~ , - . . , d . ] ' ~  1. But this is impossible, because these three formulas are 

inconsistent: the first two give [ d , . - . ,  d~]" = [c~, �9 �9 c~_~, e] m = 

[ [c1 , ' . . ,  c._1]", e] = 1, contradicting the third. 

Propositions 9 and 10 yield Theorem 3. Together  with Proposition 8, they also 

show that an infinitely generic model of K,  can be distinguished from a finitely 

generic one by the fact that the quotient of the former  by its center must contain 

an element [x~, �9 �9 x,_~] of infinite order, while the quotient of the latter by its 

center can never  contain such an element. In particular for n = 2, one quotient 

can never be periodic and the other must always be. 

In the case of K+~, every noncentral  (n - 1)-fold commuta tor  has infinite order  

modulo the center, since otherwise there would be torsion in the center. Hence  

every e.c. model of K~ satisfies 

V w , " "  Vw,- I{3z([wl ,"  " ", w,-, ,  z] ~ 1)---~ 

V x , . . -  V x ~ l y ( [ x , , . . . ,  x,] = [ w , , . . . ,  w~_,, y])}, 

and in particular every such model satisfies ~ , .  

We conclude with a result on the centers of e.c. nilpotent groups. In [7] we 

proved that every element  of the commuta tor  subgroup of an e.c. metabel ian 

(solvable of rank < 2 )  group is itself actually a commutator .  We have the 

following analogue for K. :  

PROPOSITION 11. Let G be an e.c. model of K.. Then i) every element of the 

center of G is an n-fold commutator, and consequently ii) Z ( G ) =  G ~. 
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PROOF. Let M be a model of Kn containing an ( n -  1)-fold commutator  b 

which is of  infinite order  modulo the center, and let N = G (~) M. Then b has 

infinite order modulo Z(N).  If c E Z (G)  then c is central in any model of K,  

extending G, because G is e.c. This is all we need to repeat the proof of 

Proposition 7 and find an extension H of N and h E H such that c = [b, hi.  Thus 

H ~ 3 x l . . .  3Xn-l:ly (C = [Xl,"" ", X.-1, y]), SO this sentence holds in G. 

PROPOSITION 12. Proposition 11 holds with Kn replaced by K+.. 

PROOF. If G is torsion-free then we can, if necessary, factor the extension H 

of Proposition 11 by its torsion subgroup to obtain a torsion-free extension of G 

containing the desired elements b and h. 

The following corollary of Proposition 11 was found during a conversation 

with Greg Cherlin. 

PROPOSITION 13. i) For any n >= 2, the center of any finitely generic model of K, 
is periodic. 

ii) Every finitely generic model of K2 is periodic. 

PROOF. i) Let c E Z (G)  where G is a finitely generic model of K,. By 

Proposition 11, we have c = [[x~, �9 �9 X,-l], x,] for s~me Xl,." ", x, in G. Proposi- 

tions 8 and 10 give us an integer m such that [x~, . . . ,  x,_~]" E Z(G).  Then 

c "  = 1. 

ii) We have already remarked that for the case n = 2, G / Z ( G )  is periodic; 

thus by (i), G is itself periodic. 
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